Abstract No. hans0538

Reduction of CuO in H₂: In Situ Time-Resolved XRD Studies

J. Rodriguez, J. Kim, J. Hanson (BNL), M. Pérez (Univ. Central Venezuela), A. Frenkel (Yeshiva) Beamline(s): X7B

Introduction: CuO is used as a catalyst or catalyst precursor in many chemical reactions that involve hydrogen as a reactant or product. It has been proposed that in several of these catalytic process CuO undergoes a complete reduction and metallic copper(Cu^0) is the real active phase [1]. For years, there has been controversy about the relative importance of Cu^{+1} and Cu^0 in centers in the methanol synthesis reaction [2,3]. In order to solve this issue one needs a fundamental understanding of the H₂ reaction with CuO [4].

Methods and Materials: Samples of CuO were loaded in a sapphire capillary attached to a flow-reaction cell similar to those described in refs. [5,6]. The sample was heated in the range of 150-300°C with a small resistance heater wrapped around the capillary. A 5%H₂/95%He mixture was flowed through the capillary and reactant gases where sampled with a SRS RGA. The XRD data were collected with a MAR345 image plate detector and the powder rings were integrated using FIT2D code [7].

Results: Fig. 1 shows typical results from the time resolved XRD and Fig. 2 shows H_2O formation determined from RGA.

Conclusions: Oxide reduction was observed but only after an induction period. High temperature or increased H_2 pressure lead to a decrease in the magnitude of the induction time. The H_2 flow rate determines the amount of Cu^{+1} formation. Under higher flow rates a direct $CuO \rightarrow Cu$ transformation occurs. To facilitate the generation of Cu^{+1} in a catalytic process one can limit the supply of H_2 or mix this molecule with molecules which can act as oxidizing agents (O_2, H_2O) .

Acknowledgments: The work at BNL was financed through contract De-AC02-98CH10086 with the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences.

References: [1]. Campbell, C. T., Daube, K. A. and White, J.M. Surf. Sci., 182, 458 (1987).

- [2] Kung, H.H, Transition Metal Oxides: Surface Chemistry and Catalysis Elsevier: NewYork, 1989.
- [3] Klier, K., Adv. Catal. 31,243 (1983).
- [4]. Rodriguez, J. A., Kim, J.Y., Hanson, J.C., Perez, M., Frenkel, A. F. Cat. Letters (in press)
- [5]. Chupas, P. J., Ciraolo, M.F., Hanson, J.C. and Grey, C.P., J. Am. Chem. Soc., 123, 1694 (2001).
- [6]. Clausen, B. S., Steffensen, G., Fabius, B., Villadsen, J., Freidenhans, R and Topsoe, H, *J. Catal.* **132**, 524 (1991).
- [7] Hammersley, A. P., Svensson, S.O. and Thompson, A., Nucl. Instr. Methods Phys., 346, 321 (1994)

Fig1. In situ time-resolved XRD reduction of CuO to Cu⁰. (flow rate 20cc/min)

Fig. 2 Water formation during reduction in Fig. 1.